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The electric field gradients at an ion site per monopole moment and per quadrupole moment of all other
jons are calculated for a body-centered rhombohedral structure over a wide range of parameter values.
Similar calculations specifically applicable to the elements arsenic, antimony, and bismuth, for which the
body-centered ion is slightly displaced, are also performed.

I. INTRODUCTION

HE experimental observation' of the nuclear
quadrupole resonance spectrum in antimony fo-
cusses attention upon the electric field gradient (EFG)
at an ion site in the crystalline structure characteristic
of this material, that is, in what is commonly known as
the arsenic structure. Following Pearson,? the latter may
be described as rhombohedral with two ions per unit cell
at positions (7,5,5) and (v,2,). Although the sites of
these two ions are equivalent, they are here designated
I and II, respectively, strictly for reference purposes. In
the present article, the origin of coordinates is located
at a type I site with the positive z axis passing through
the nearest type II site and coincident with the three-
fold axis of symmetry. A description in terms of an
hexagonal unit cell containing three ions at type I sites
and three at type II sites is also possible and, for some
purposes, is preferable; Table I summarizes the two
descriptions in the coordinate system just delineated.
The structure may also be regarded as two interpene-
trating and slightly distorted cubic close packed lattices.
This article investigates the axial EFG at a given ion
site due to nonoverlapping sources at all other sites in a
uniform compensating background charge density, a
configuration known as the ionic model. It is primarily
concerned with the EFG due to the monopole moments
or net charges of the sources. The lattice sums necessary
to calculate the EFG due to quadrupole moments in-
duced in the sources are also included, however, for
completeness, even though estimates of the quadrupolar
polarizability of the ions in question are not yet avail-
able. The axial hexadecapolar potential component
(fourth z derivative of potential) due to monopole mo-
ments of the sources can also be calculated from this

TasLE I. Crystallographic positions of ions in the arsenic structure.

Position in Positions in

rhombohedral hexagonal
Ion unit cell unit cell
I (0,0,0) 0,00, G3b, 3,32
II (2v,20,20) 0,0,20), (3,5, 3+20), (3,3 3+20)
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1 R. R. Hewitt and B. F. Williams, Phys. Rev. 129, 1188 (1963).

2 W. B. Pearson, Lattice Spacings and Structures of Metals and
Alloys (Pergamon Press, New York, 1958), p. 124.

second type of sum according to Eq. (3.2), below.
Following a nomenclature used earlier by Hewitt and
Taylor,®* the ionic model contribution to the EFG is
denoted 2Cy?, and the monopole and axial quadrupole
moments of the sources are denoted B® and 2B)° re-
spectively. These notations are consistent with the use
of C;™ as the coefficient of 7!P /™! (cosf) exp (¢mg) in an
expansion of the Laplacian portion of the potential in a
neighborhood of the origin due to all charge not associ-
ated with the source at the origin and with the use of B;™
as the coefficient of 7—(:D P Iml (cosh) exp (im¢) in an ex-
pansion of the potential due to the source itself. The
fraction 2C5%/ B is understood to mean the contribution
to the total EFG at an ion site per ionic charge due to
the charges on all other ions; similarly Cs/By? is under-
stood to mean the contribution to the total EFG per
quadrupole moment due to the quadrupole moments of
all other ions.

The numerical calculations reported in this paper
were performed on an IBM 1620 computer.

Gaussian units are used throughout this article.

II. RESULTS

Two types of calculation are undertaken in the re-
search reported here. The first of these is based upon an
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TasLE IL. Values (calculated from the ionic model) of a4* times
the axial electric field gradient per unit monopole moment in an
idealized arsenic structure with 2v=1/2.
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TaBLE III. Values (calculated from the ionic model) of ax®
times the axial electric field gradient per unit axial quadrupole
moment in an idealized arsenic structure with 29=1/2.

cu/ay Fu,1 Fa 11 F, total cn/an Fo1 Fon Fo, total
0.2 528.48 4134.65 4663.13 0.2 38885. 1205429. 1244314.
0.3 129.75 1198.17 1327.92 0.3 5117. 158743. 163860.
0.4 39.202 489.274 528.476 0.4 1193.6 37691.2 38884.8
0.5 10.665 239.025 249.690 0.5 349.7 12391.3 12741.0
0.6 0.647 129.103 129.750 0.6 88.14 5028.64 5116.78
0.7 —2.5957 73.4166 70.8209 0.7 —12.68 2371.02 2358.34
0.8 —3.1484 42.3507 39.2023 0.8 —55.61 1249.17 1193.56
0.9 —2.6523 23.8835 21.2312 0.9 —73.463 713.021 639.558
1.0 —1.8135 12.4782 10.6647 1.0 —78.876 428.614 349.738
1.1 —0.94164 5.31060 4.36896 1.1 —77.449 263.575 186.126
1.2 —0.16906 0.81588 0.64682 1.2 —172.0616 160.2003 88.1387

(3/2)12 0.00000 0.00000 0.00000 (3/2)12 —70.3311 140.6223 70.2912
1.3 0.45462 —1.93292 —1.47830 1.3 —64.4355 91.2691 26.8336
14 0.91883 —3.51449 —2.59566 14 —55.7205 43.0392 —12.6813
1.5 1.23159 —4.30524 —3.07365 1.5 —46.7166 8.1354 —38.5812
1.6 1.40936 —4.55780 —3.14844 1.6 —37.9704 —17.6357 —55.6061
1.7 1.47176 —4.44588 —2.97412 1.7 —29.8306 —36.7997 —66.6303
1.8 1.43874 —4.09108 —2.65234 1.8 —22.4930 —50.9699 —73.4629
1.9 1.32908 —3.57961 —2.25053 19 —16.0403 —61.2408 —77.2811
2.0 1.15966 —2.97312 —1.81346 20 —10.4761 —68.4001 —78.8762
2.1 0.94511 —2.31583 —1.37072 2.1 —5.7537 —73.0456 —178.7993
2.2 0.69779 —1.63944 —0.94165 2.2 —1.7973 —75.6517 —77.4490
2.3 0.42793 —0.96651 —0.53858 2.3 1.4822 —176.6073 —75.1251
24 0.14381 —0.31286 —0.16905 24 41769 —76.2384 —72.0615
612 0.00000 0.00000 0.00000 61/2 5.3215 —75.6526 —70.3311
2.5 —0.14800 0.31066 0.16266 2.5 6.3748 —74.8215 —68.4467
2.6 —0.44236 0.89698 0.45462 2.6 8.1567 —72.5922 —64.4355
2.7 —0.73533 1.44177 0.70644 2.7 9.5940 —69.7513 —60.1573
2.8 —1.02398 1.94281 0.91883 2.8 10.7484 —66.4688 —55.7204
2.9 —1.30616 2.39939 1.09323 2.9 11.6722 —62.8875 —51.2153
3.0 —1.58037 2.81196 1.23159 3.0 12.4093 —59.1259 —46.7166
31 —1.84561 3.18177 1.33616 3.1 12.9960 —55.2814 —42.2854
3.2 —2.10127 3.51064 1.40937 3.2 13.4619 —51.4323 —37.9704
3.3 —2.34703 3.80076 1.45373 3.3 13.8313 —47.6406 —33.8093
3.4 —2.58281 4.05457 1.47176 34 14.1237 —43.9543 —29.8306
3.5 —2.80868 4.27465 1.46597 3.5 14.3548 —40.4090 —26.0542
3.6 —3.02485 446359 1.43874 3.6 14.5374 —37.0304 —22.4930
37 —3.23159 4.62397 1.39238 3.7 14.6814 —33.8357 —19.1543
3.8 —3.42924 4.75832 1.32908 3.8 14.7950 —30.8352 —16.0402
3.9 —3.61818 4.86905 1.25087 3.9 14.8844 —28.0336 —13.1492
4.0 —3.79830 495846 1.15966 4.0 14.9549 —25.4310 —10.4761
4.1 —3.97150 5.02870 1.05720 4.1 15.0103 —23.0243 —8.0140
4.2 —4.13669 5.08180 0.94511 4.2 15.0540 —20.8077 —5.7537
43 —4.29476 5.11962 0.82486 43 15.0883 —18.7735 —3.6852
44 —4.44608 5.14388 0.69780 44 15.1153 —16.9126 —1.7973
4.5 —4.59104 5.15616 0.56512 4.5 15.1365 —15.2152 —0.0787
4.6 —4.72996 5.15789 0.42793 4.6 15.1532 —13.6710 1.4822
4.7 —4.86319 5.15040 0.28721 4.7 15.1663 —12.2693 2.8970
48 —4.99105 5.13485 0.14380 4.8 15.1766 —10.9997 4.1769
49 —5.11382 5.11233 —0.00149 49 15.1847 —9.8520 5.3327
5.0 —5.23179 5.08378 —0.14801 5.0 15.1910 —8.8162 6.3748
5.5 —5.75820 4.87785 —0.88035 5.5 15.2073 —5.0043 10.2030
6.0 —6.19754 461716 —1.58038 6.0 15.2122 —2.8029 12.4093
6.5 —6.56949 4.34409 —2.22540 6.5 15.2137 —1.5563 13.6574
7.0 —6.88836 4.07968 —2.80868 7.0 15.2141 —0.8592 14.3549
7.5 —7.16474 3.83322 —3.33152 7.5 15.2142 —0.4726 14.7416
8.0 —7.40658 3.60778 —3.79830 8.0 15.2143 —0.2594 14.9549
8.5 —7.61997 3.40337 —4.21660 8.5 15.2143 —0.1421 15.0722
9.0 —17.80964 3.21861 —4.59103 9.0 15.2143 —0.0778 15.1365
9.5 —17.97936 3.05158 —4.92778 9.5 15.2143 —0.0425 15.1718

10.0 —8.13210 2.90031 —5.23179 10.0 15.2143 —0.0233 15.1910

idealized arsenic structure with 2v=1%, that is, upon a
body-centered rhombohedral structure, and has as its
object the tracing of the behavior of the EFG over a
wide range of cy/ag where cy and ay are the lattice
parameters in the hexagonal description. This calcula-
tion parallels work of a similar nature in the tetragonal®'s

5 I. W. de Wette, Phys. Rev. 123, 103 (1961).

and in the hexagonal close packed lattices.? Tables IT and
III give the dimensionless quantities Fy=ay®2C5"/ By
and Fo=an®Cs"/B, respectively, as functions of cy/ay.
These data are also presented graphically in Figs. 1 and
2. In both presentations, the effects of ions at type I
sites and type II sites are listed separately in the interest
of versatility. The special entries at cu/ax= (3/2)"/2 and
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TaBLE IV. Crystal structure parameters for arsenic, antimony, and bismuth.
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Chemical T CH ay
symbol (°K) (A) (4) cu/an 20
As® Room 10.54 3.762 2.803 0.452
Shb 4.2 11.222 4.3007+0.0002 2.6093+0.0003 0.46724+0.00004
78 11.232 4.30124-0.0002 2.6114+0.0003 0.46728+-0.00004
298 11.274 4.30844-0.0002 2.61674-0.0003 0.46698+-0.00013¢
Bid 42 11.807 4.5333+0.0005 2.6044-4+0.0002 0.468124-0.00003
78 11.818 4.53454-0.0005 2.6062+0.0003 0.468014-0.00003
29642 0.4680 =4-0.0002
304 11.862 4.54614-0.0002 2.6091+0.0002

a From Pearson (reference 2).

b From Barrett, Cucka, and Haefner (reference 6).

< This tolerance estimated by the authors using data from reference 6.
d From Barrett (reference 7).

(6)'72 correspond to rhombohedral angles of 90° and 60°,
that is, to situations in which the total structure may be
thought of as body-centered cubic and simple cubic, re-
spectively. The null values taken by F s at these points

TaBLE V. Values (calculated from the ionic model) of ag?® times
the axial electric field gradient per unit monopole moment for the
elements antimony and bismuth.

° X cu/a Fy, 29 Fy,

are to be expected from the high symmetry of thelattice. e s v
Some interesting relationships which extend the utility 2.59 —0.412932 0.4655 —0.301554
E 0.4660 —0.269320
of Tables IT and III are deducible from the nature of the 0.4665 —0.237519
crystal structure. The first of these is based upon the 0.4670 —0.206154
fact that a simple rhombohedral lattice is equivalent to 822;8 :8%12%2
a body-centered rhombohedral lattice with ¢y twice as 0.4685 —0.114687
great. Letting F stand for either Fir or Fq, one has 82232 —8822(9)%2

Fi(cu/au)=Fiota1(2cu/an). (2.1) )
2.60 —0.442362 0.4655 —0.249923
Similar considerations make it possible to calculate the 8222(5) _8%;5;2%
EFG produced by ions at the rhombohedral positions 0.4670 —0.154062
111 or 3,3,)) from data already available. If these 0.4675 —0.122986
two sites are designated IIT and IV, respectively, then giggg :882%?2;
for the quantities considered here it follows that 0.4690 —0032411
0.4695 —0.003110
Fin(cu/am)= FIV(CH/dH) =3Fu(3cn/an). (2.2)

. . . 2.61 —0471777 0.4655 —0.198589
The second type of calculation applies specifically to 0.4660 —0.166046
the three elements arsenic, antimony, and bismuth. The 0.4665 —0.133941
0.4670 —0.102278
0.4675 —0.071056
200 —rr—— 77— 0.4680 —0.040279
0.4685 —0.009947
0.4690 0.019938
ol ] 0.4605 0.049374
2.62 —0.501174 0.4655 —0.147556
0.4660 —0.114863
0ol ] 0.4665 —0.082611
0.4670 —0.050803
0.4675 —0.019440
I1ig. 2. Graphical Fo sol | 8222? 88‘11}312
presentation of Fo1 Type Isites 0.4690 0.071965
tions of .CH/aH- \ 0.4695 0.101533
0 — 2.63 —0.530550 0.4655 —0.096826
0.4660 —0.063986
0.4665 —0.031591
-sol _ 0.4670 0.000358
0.4675 0.031860
0.4680 0.062913
0.4685 0.093516
oo o 0.4690 0.123666
6 12 3 4 586 7 8 9 10 0.4695 0.153363
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TasLE VI. Values (calculated from the ionic model) of a 5% times
the axial electric field gradient per unit axial quadrupole moment
for the elements antimony and bismuth.

cu/an Fo1 v Font
2.59 7.9951 0.4655 —64.4018
0.4660 —64.6607
0.4665 —64.9149
0.4670 —65.1645
0.4675 —65.4096
0.4680 —65.6501
0.4685 —65.8860
0.4690 —66.1175
0.4695 —06.3446
2.60 8.1567 0.4655 —64.3013
0.4660 —64.5561
0.4665 —64.8063
0.4670 —65.0520
0.4675 —65.2931
0.4680 —65.5297
0.4685 —65.7618
0.4690 —65.9895
0.4695 —66.2128
2.61 8.3149 0.4655 —64.1951
0.4660 —64.4459
0.4665 —64.6921
0.4670 —64.9338
0.4675 —65.1710
0.4680 —65.4037
0.4685 —65.6319
0.4690 —65.8558
0.4695 —66.0753
2.62 8.4696 0.4655 —64.0836
0.4660 —64.3303
0.4665 —64.5724
0.4670 —64.8101
0.4675 —65.0433
0.4680 —65.2721
0.4685 —65.4965
0.4690 —65.7165
0.4695 —65.9323
2.63 8.6211 0.4655 —63.9667
0.4660 —64.2093
0.4665 —64.4474
0.4670 —64.6810
0.4675 —64.9103
0.4680 —65.1351
0.4685 —65.3556
0.4690 —65.5718
0.4695 —65.7838

TAYLOR AND E. H.

structure parameters given in Table IV for these sub-
stances were obtained, respectively, from Pearson?; from
Barrett, Cucka, and Haefner®; and from Barrett.” Since
such parameters are always subject to determination at
new temperatures, the authors chose (in the cases of
antimony and bismuth) to present accurately calculated
results in the form of Tables V and VI which cover a
substantial range of parameter values. The grain size of
these tables was selected so that three or four figure
accuracy can be obtained by linear interpolation, and
accuracy equal to that of the entries themselves, by
methods employing second differences. Fortunately,
the structure parameters of antimony and bismuth are

¢ C. S. Barrett, P. Cucka, and K. Haefner (to be published).
7 C. S. Barrett, Australian J. Phys. 13, 209 (1960).

HYGH

very similar, so that one set of tables suffices for both.
Since the parameters for arsenic are relatively poorly
known, only single rough values of F and Fg are given
for this substance. Table VII summarizes the specific
results obtained for the three materials.

III. METHOD OF CALCULATION

The method employed here is that reported by Hewitt
and Taylor,® which involves a summation over recipro-
cal lattice vectors h. If 4 (h) denotes the Fourier coeffi-
cient of a charge density corresponding to a lattice of
monopoles in a uniform compensating background, then

Co/B=— (4n/3)3 [A (h)/B/]

XAﬂ+5/2(27rh1’1) Pz (COS@h). (3. 1)

The quantity Cs°/B is calculated with the aid of an
equivalence derived by Taylor*:

C20/32 =6C40/B()0, (32)

and C&/B¢ can be calculated from the same set of
Fourier coefficients used in (3.1). Thus

C&/BP= (4r/105)3" [A (h)/Bs"](2mh)?

XAWH)/g(Zﬂ'hfl)P‘;(COSOh). (3.3)

The A, (2) function which appears above is equivalent to
T'(14v)(2/2)*7J,(2), and # is an arbitrary non-negative
integer (see reference 3). The quantity 7, is a parameter
with the dimensions of length and may be set equal to
any distance less than 7, the nearest neighbor distance,
without affecting the final result. Quantities such as
real space distance, reciprocal space distance, and cosfy,
which are geometrical in character, are derived in a
general fashion in this section with detailed formulas
reserved for appendixes.

Since both the rhombohedral and the hexagonal sys-
tems involve nonorthogonal coordinates, the language
of generalized coordinate transformations, including
tensor notation, is useful. Let a;, j=1, 2, 3, be the
primitive translation vectors of a given crystal lattice
and let b* b*.-a;=§;*, be the primitive translation
vectors of the corresponding reciprocal lattice.® The
writing of a displacement vector r as a linear combina-
tion of the vectors a; is equivalent to a coordinate
transformation between the components of r in the
rectangular system and the components of r in a system
defined by the a; basis, that is, in the crystal system. In
what follows, r is written in terms of its contravariant
components 77 in the rectangular system or #’ in the
crystal system, and a reciprocal vector h, in terms of its
covariant components %; in the rectangular system or p,
in the crystal system. The usual summation convention
is used, and the transformation from one system to the
other and vice versa is effected through tensors com-

8 C. Kittel, Introduction to Solid-State Physics (John Wiley &
Sons, Inc., New York, 1956), 2nd ed., p. 49.
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TasLE VIL. Specific results obtained for the elements arsenic, antimony, and bismuth. Values for arsenic were spgcially calculated;
values for antimony and bismuth were interpolated from Tables V and VI. Central values of structure parameters (without tolerances)

from Table IV were employed.

Chemical T

symbol (°K) Fax Fy Fu, total Fo1 Fo 1 Fg, total
As Room —1.033 —0.388 —1.421 10.78 —55.01 —44.23

Sh 4.2 —0.46972 —0.09086 —0.560358 8.304 —65.057 —56.753

78 —0.47589 —0.07750 —0.55339 8.337 —65.050 —56.713

298 —0.49148 —0.06902 —0.56050 8.419 —64.842 —56.423

Bi 4.2 —0.45531 —0.06210 —0.51741 8.227 —65.531 —57.304

78 —0.46060 —0.05942 —0.52002 8.255 —65.457 —57.202
304 —0.4691 —0.0450 —0.5141 8.30 —65.42 —57.12

posed of the rectangular components of the primitive
translation vectors. Thus

(3.4)
(3.5)

u?‘: rkbfk ;

pk=hjakf.

rk=qyig;*,
hi= pib*;;

Evidently %/ and p; are dimensionless, and, for vectors
from the origin to lattice points, they are integers. The
“first unit cell” of the crystal is here understood to mean
the cell in which 0K #7<1 for all §;in this cell, the #7 are
equivalent to the usual triads of numbers employed to
designate crystallographic positions. Summation over h
as required in (3.1) and (3.3) amounts to a summation
over integral values of i, ps, and ps.

Distances in real space or reciprocal space are ob-
tained from appropriate metric tensors. Thus r?= gzuu*
and h?=g’*p;p,, where

gik=a;"ar mn; (3.6)
g7 =bi bt . 3.7)

Since cosOy=rhs/h,
costn=pib*s[ g*p;pi 1'%, (3.8)

For a lattice of point charges in a uniform compen-
sating background, the Fourier coefficient becomes pro-
portional to the crystal structure factor, that is, to a sum
over terms of the form exp(—2nih-r,) where r, is the
displacement vector from the origin to the nth ion
within the first unit cell. The dot product is an invariant
equal to %;(r.)7 or to p;(u.)?, and the Fourier coefficient
may be written

A(h)=0, h=0;

N

=Bdr™ X exp[—2mip;(un)’],

n=l1

h=0. (3.9)

TanLe VIII. Values of a;%/ag for the rhombohedral unit cell.

where NV is the total number of ions in the first unit cell
and 7, is the volume of that cell. The latter is given by

To=|a;*|. (3.10)
Specific derivations for the rhombohedral and the

hexagonal structures are listed in Appendixes A and B,
respectively.

IV. CHECKING PROCEDURES

The results given in Tables II, ITI, V, and VI were
subjected to three checking procedures.

(1) As indicated earlier, the number # in Eqgs. (3.1)
and (3.3) may be set equal to any non-negative integer.
All entries in the tables mentioned were recalculated
with a changed value of # and the results compared.
Agreement extended to three or four more figures than
are actually quoted in the tables.

(2) The asymptotic forms of Fy and Fq as cu/an
tends to zero or to infinity were calculated by summa-
tions in real space and were found consonant with the
entries in Tables IT and II1. As cy/an tends to zero, the
lattice reduces effectively to a single line of point sources
and the sum becomes related to a value of the Riemann
zeta function. As cy/ay tends to infinity, on the other
hand, the lattice reduces to a planar distribution of
point sources. Summation over these leads to the
following :

Far1— Far tors1 — —11.0341754; (4.1)

Fq,1— Fq tota1— 15.21427168. (4.2)
The result of (4.1) was calculated by van der Hoff and

TaBLE IX. Values of arb?s for the rhombohedral unit cell.

k j=1 j=2 j=3 k j=1 j=2 7=3

1 sind —4 sing —4 sind 1 % csch —13 csco —% csch
2 3V3 sing —3%V3 sind 2 0 3V3 csch —1V3 csch
3 cosf cosf cosd 3 3 secd 1 secH 4 secd
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Benson®; that of (4.2), by the authors. The reasonable-
ness of these forms, especially in the latter case where
the interaction is of shorter range and the asymptotic
value more quickly approached, is clearly discernible.
(3) All quantities in Tables II, III, V, and VI were
calculated using the hexagonal description of the crystal
structure. In a representative number of cases, however,
the calculations were also performed using the rhombo-
hedral description. Agreement of the same order as that
mentioned in paragraph (1) above was reached.

APPENDIX A: THE RHOMBOHEDRAL UNIT CELL

The rhombohedral unit cell is characterized by a
single length parameter ar and by the angle @ between
any two a; vectors. Each a; vector makes an angle 6
with the z axis, where

cosf=[ (142 cosa)/3 ]2, (A1)

and the vector a, lies in the xz plane. Components of the
tensors ¢;* and b7, are obtainable from Tables VIII and
IX respectively. Metric expressions for displacements
from the origin to points in real space and in reciprocal
space are given, respectively, as follows:

r*=ar*{[ (w)*+ (u?)*+ (#*)*][1—cosa]]

[+ u+ud P cosa}; (A2)
h*={ag*(1—cosa) (142 cosa) } " { [ p1?+ a2+ ps* ]
X[142 cosa ]—[p1+po+ps 2 cosa}. (A3)
Other useful quantities are
costn= (p1+po+p3)/har[3(142 cosa) /2; (A4)
To=ar*(1—cosa)[ 142 cosa ]2, (AS)

The Fourier coefficients for a lattice of ions at type I
sites and for h#£0 are given by

Ax(h)=Bri; (A6)
for a lattice of ions at type II sites and h>=0,
An(h)=A4:1(h) exp[ —4riv(prtpatps)]. (A7)

APPENDIX B: THE HEXAGONAL UNIT CELL

The hexagonal unit cell is characterized by the lattice
parameters ag, an, and cg; the vector a, is taken to lie
along the x axis. Components of the tensors a;* and &7
are obtainable from Tables X and XI, respectively.

(1;%)M. E. van der Hoff and G. C. Benson, Can. J. Phys. 31, 1087
53).
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TaBLE X. Values of a;*/ay for the hexagonal unit cell.

k =1 j=2 j=3
1 1 — 0
2 0 13 0
3 0 0 cu/on

TaBLE XI. Values of aub7; for the hexagonal unit cell.

k j=1 j=2 i=3
1 1 0 0
2 V3 V3 0
3 0 0 anfcu

Metric expressions for displacements from the origin to
points in real space and in reciprocal space are given
respectively as follows:

r=ag’l (W)—u'v+ () J+cx()?;  (B1)
n=[4/3ax* L p*+ prpetp21+p/cn>.  (B2)
Other useful quantities are
cosbn=ps/hcn; (B3)
To=anyV3/2. (B4)

The Fourier coefficients for a lattice of ions at type I
sites and for hs£0 are given by either of the following
equivalent expressions:
Ax(h)=Br¢ {1+ exp[ —2mi (3p1+3pat3ps) ]
+exp[ —2mi(§5p1+3p2t505) ]} ;

if 3 divides (pa— p1+ps),

if 3does not divide (po— p1+p3). (B6)
The Fourier coefficients for a lattice of ions at type II
sites and for h>£0 are

An(h)=A1(h) exp(—4wrivps).

(BS)
A (h) = 33007'0_1,
=0,

(B7)
APPENDIX C: TRANSFORMATION BETWEEN
RHOMBOHEDRAL AND HEXAGONAL
UNIT CELLS

The following formulas were found useful and are
included for reference:

ag=ag2 sin(e/2);
(cu/am)=[3(142 cosa)/2(1—cosa)]!'2;
cosa=[2(cx/an)*—31/[2(cu/an)*+6].

(C1)
(C2)
(C3)



